
For

Audit Report,

August, 2024

01www.quillaudits.com

Fringe Finance - Audit Report

09Medium Severity Issues

08High Severity Issues

092. ChainlinkPriceProvider does not implement check against min price

124. OnlyAdmin modifier not used in many of the contracts

113. Add _disableInitializer() in implementation contract’s constructor [Common Issue]

081. Inflation attack

12Informational Issues

11Low Severity Issues

......…... 14Automated Tests

... 13Functional Tests Cases

.........…... 14Closing Summary

.................................…………….. 14Disclaimer

Table of Content

….. 02Executive Summary

......…... 04Number of Security Issues per Severity

... 05Checked Vulnerabilities

... 06Techniques and Methods

.. 07Types of Severity

......….. 07Types of Issues

https://www.quillaudits.com/smart-contract-audit

02www.quillaudits.com

Fringe Finance - Audit Report

Project Name Fringe Finance

Timeline 5th July 2024 - 9th August 2024

Overview Fringe finance is a borrowing lending platform with new features
such as partial liquidations.

Method Manual Review, Functional Testing, Automated Testing, etc.
All the raised flags were manually reviewed and re-tested to
identify any false positives.

Source Code https://github.com/fringe-finance/primary-smart-contracts/tree/
cc48efe2868c017e0f4b62f5278be081d2baaa9a

Audit Scope The scope of this audit was to analyze the Fringe Finance codebase
for quality, security, and correctness.

Contracts In-Scope All list of changed contracts for Fringe V2.5:
Updated:
BlendingToken.sol
PriceProvider.sol
ChainlinkPriceProvider.sol
PythPriceProvider.sol
wstETHPriceProvider.sol
PriceProviderAggregator.sol
PriceProviderAggregatorPyth.sol
PrimaryLendingPlatformV2Core.sol
PrimaryLendingPlatformAtomicRepaymentCore.sol
PrimaryLendingPlatformLeverageCore.sol
PrimaryLendingPlatformLiquidationCore.sol
PrimaryLendingPlatformWrappedTokenGatewayCore.sol
PrimaryLendingPlatformV2Zksync.sol
PrimaryLendingPlatformAtomicRepaymentZksync.sol

Updated Code Received 23rd August 2024

Second Review 26th August 2024

Executive Summary

https://www.quillaudits.com/smart-contract-audit
https://github.com/fringe-finance/primary-smart-contracts/tree/cc48efe2868c017e0f4b62f5278be081d2baaa9a
https://github.com/fringe-finance/primary-smart-contracts/tree/cc48efe2868c017e0f4b62f5278be081d2baaa9a

03www.quillaudits.com

Fringe Finance - Audit Report

Branch

Fixed In

Contracts out of Scope

PrimaryLendingPlatformLeverageZksync.sol
PrimaryLendingPlatformLiquidationZksync.sol
PrimaryLendingPlatformWrappedTokenGatewayZksync.sol
PrimaryLendingPlatformModeratorCore.sol
Added:
LPPriceProvider.sol
UniswapV3PriceProvider.sol
ERC4626PriceProvider.sol
PriceOracle.sol
Asset.sol
Errors.sol

Main

https://github.com/fringe-finance/primary-smart-contracts/
commits/feature/plpv2.5-audit-fix/contracts

Commit hash: 68a3531aa6c818bd4c0b9405bcc23e55671ab3ab

In-scope contract has been audited by QuillAudits. However, these
contracts inherit functionality from out-of-scope Smart contracts
that were not audited. Vulnerabilities in unaudited contracts could
impact in-scope Smart Contracts functionality. QuillAudits is not
responsible for such vulnerabilities.

Below are Out of Scope Contracts:
 • contracts/interfaces/*
 • OpenZeppelin contracts (Initializable.sol, …)

Executive Summary

https://www.quillaudits.com/smart-contract-audit
https://github.com/NetWeaveFi/NetWeave-Finance
https://github.com/fringe-finance/primary-smart-contracts/commits/feature/plpv2.5-audit-fix/contracts
https://github.com/fringe-finance/primary-smart-contracts/commits/feature/plpv2.5-audit-fix/contracts

04www.quillaudits.com

Fringe Finance - Audit Report

0

0

0

11

0

0

00

0

1

0

0

0

1

0

0

Open Issues

Acknowledged Issues

Partially Resolved Issues

Resolved Issues

High Medium Low Informational

High

Low

Medium

Informational
Issues Found

4

Number of Issues per Severity

https://www.quillaudits.com/smart-contract-audit

05www.quillaudits.com

Fringe Finance - Audit Report

Checked Vulnerabilities

Reentrancy

Timestamp Dependence

Gas Limit and Loops

DoS with Block Gas Limit

Transaction-Ordering Dependence

Use of tx.origin

Exception disorder

Gasless send

Balance equality

Byte array

ERC20 API violation

Compiler version not fixed

Redundant fallback function

Send instead of transfer

Style guide violation

Unchecked external call

Unchecked math

Unsafe type inference

Implicit visibility level

Transfer forwards all gas

https://www.quillaudits.com/smart-contract-audit

06www.quillaudits.com

Fringe Finance - Audit Report

Throughout the audit of smart contracts, care was taken to ensure:

The overall quality of code.
Use of best practices.
Code documentation and comments match logic and expected behavior.
Token distribution and calculations are as per the intended behavior mentioned in the
whitepaper.
Implementation of ERC’s standards.
Efficient use of gas.
Code is safe from re-entrancy and other vulnerabilities.

The following techniques, methods, and tools were used to review all the smart contracts.

In this step, we have analyzed the design patterns and structure of smart contracts. A
thorough check was done to ensure the smart contract is structured in a way that will not
result in future problems.

Structural Analysis

A static Analysis of Smart Contracts was done to identify contract vulnerabilities. In this
step, a series of automated tools are used to test the security of smart contracts.

Static Analysis

Manual Analysis or review of code was done to identify new vulnerabilities or verify the
vulnerabilities found during the static analysis. Contracts were completely manually
analyzed, their logic was checked and compared with the one described in the
whitepaper. Besides, the results of the automated analysis were manually verified.

Code Review / Manual Analysis

In this step, we have checked the behavior of smart contracts in production. Checks were
done to know how much gas gets consumed and the possibilities of optimization of code
to reduce gas consumption.

Gas Consumption

Manual Review, Slither, Hardhat.
Tools and Platforms used for Audit

Techniques and Methods

https://www.quillaudits.com/smart-contract-audit

07www.quillaudits.com

Fringe Finance - Audit Report

Every issue in this report has been assigned to a severity level. There are four levels of
severity, and each of them has been explained below.

Types of Severity

A high severity issue or vulnerability means that your smart contract can be exploited.
Issues on this level are critical to the smart contract’s performance or functionality, and
we recommend these issues be fixed before moving to a live environment.

High Severity Issues

The issues marked as medium severity usually arise because of errors and deficiencies in
the smart contract code. Issues on this level could potentially bring problems, and they
should still be fixed.

Medium Severity Issues

Low-level severity issues can cause minor impact and are just warnings that can remain
unfixed for now. It would be better to fix these issues at some point in the future.

Low Severity Issues

These are four severity issues that indicate an improvement request, a general question,
a cosmetic or documentation error, or a request for information. There is low-to-no
impact.

Informational

Types of Issues

Security vulnerabilities identified that must be resolved and are currently unresolved.
Open

These are the issues identified in the initial audit and have been successfully fixed.
Resolved

Vulnerabilities which have been acknowledged but are yet to be resolved.
Acknowledged

Considerable efforts have been invested to reduce the risk/impact of the security issue,
but are not completely resolved.

Partially Resolved

https://www.quillaudits.com/smart-contract-audit

08www.quillaudits.com

Fringe Finance - Audit Report

High Severity Issues

A1. Inflation attack

Remediation
Ensure that markets are never empty by minting small amount of fToken at the time of
market creation, preventing the rounding error from being used maliciously. A possible
approach is using uniswapV2 implementation that locks small amount of tokens
permanently.

Description

Path

Function

Defi lending protocols such as fringe finance lets you deposit $100 worth of token A to
borrow 50-80% amount of token B. Here to manipulate the price of the tokens oracles
can be manipulated to inflate the price of the token. The issue lies when the collateral is
withdrawn through redeem function. There is possibility that fToken may give value close
to full value but not complete value. Ie, it might return 1.9999995

But not 2. This might result in rounding the value down resulting in only returning 1.

The calculation of the exchangeRate, as previously introduced, involves getCashPrior(),
which refers to the amount of underlying balance owned by the fToken contract. By
directly transferring underlying tokens into the contract (without mint, just transferring),
the hacker can manipulate the exchangeRate.

BErc20.sol

getCashPrior()

Status
Resolved

Fringe Finance Team’s Comment
We will be the first to supply fToken right after fToken is deployed and transfer the
corresponding amount of fToken to 0x00 address. The meaning of this action is:

Also the new oracle price model has been implemented.

Make sure that the total supply of fToken never goes to zero
Permanently lock the number of certain number of fTokens to 0x00 address at the first
supply of capital assets.

•
•

https://www.quillaudits.com/smart-contract-audit

09www.quillaudits.com

Fringe Finance - Audit Report

Medium Severity Issues

B1. ChainlinkPriceProvider does not implement check against min price

Description

Path

Function

ChainlinkPriceProvider have a built-in circuit breaker if the price of an asset goes outside
of a predetermined price band. The result is that if an asset experiences a huge drop in
value (i.e. LUNA crash) the price of the oracle will continue to return the minPrice instead
of the actual price of the asset. This would allow users to continue borrowing with the
asset but at the wrong price. This is exactly what happened to Venus on BSC when LUNA
imploded.

ChainlinkPriceProvider have minPrice and maxPrice circuit breakers built into them. This
means that if the price of the asset drops below the minPrice, the protocol will continue
to value the token at minPrice instead of its actual value. This will allow users to take out
huge amounts of bad debt and bankrupt the protocol.

Example: TokenA has a minPrice of $1. The price of TokenA drops to $0.10. The
aggregator still returns $1 allowing the user to borrow against TokenA as if it is $1 which
is 10x its actual value.

ChainlinkPriceProvider.sol

getLastprice()

https://www.quillaudits.com/smart-contract-audit
https://rekt.news/venus-blizz-rekt/
https://rekt.news/venus-blizz-rekt/

10www.quillaudits.com

Fringe Finance - Audit Report

Recommendation

Fringe Finance Team’s Comment

ChainlinkPriceProvider should check the returned answer against the minPrice/maxPrice
and revert if the answer is outside of the bounds:

It would make more sense to have an off-chain backend system to monitor the price from
Chainlink. If the price is incorrect, we would intervene to pause the oracle.

(uint80 roundId, int256 answer, , /*uint256 startedAt*/ uint256 updatedAt /*uint80
answeredInRound*/,) = AggregatorV3Interface(aggregatorPath
).latestRoundData();

++ if (answer >= maxPrice or answer <= minPrice) revert();

Status
Acknowledged

https://www.quillaudits.com/smart-contract-audit

11www.quillaudits.com

XPAZA - Audit Report

Low Severity Issues

3. Add _disableInitializer() in implementation contract’s constructor [Common Issue]

Description

Remediation

Fringe Finance Team’s Comment

In proxy contracts where there is initialize() function without access control can be front
run by attackers. From OZ blog:

At the time of deploying the contract, the protocol owner initializes the proxy contract,
and the protocol owner becomes the owner of the contract. However, an attacker can call
initialize function on the implementation contract and become the owner of the
implementation contract. In this case, the attacker becomes the owner of the
implementation contract. If the implementation contract’s delegatecall is executed, it
could introduce a critical vulnerability. Specifically, the attacker could use delegatecall to
execute code from the implementation contract that triggers attack.sol to self-destruct.
As a result, all calls made by the proxy contract would fail.

To remediate the issue please make sure to add
 constructor() {
 _disableInitializer();
}.
Access control such as owner variable can be added.
Also on other hand make sure to initialize the function while deploying.

At contract deployment time, the protocol deployer will call the initialize() function to
become the admin and moderator of both the proxy contract and the implementation
contract. Initializing the implementation will prevent any malicious attacker from calling
the initialize() function and taking control of the implementation contract or self-
destructing itself.

Status
Acknowledged

12www.quillaudits.com

Fringe Finance - Audit Report

1. “OnlyAdmin” modifier not used in many of the contracts

Status
Acknowledged

Informational Issues

13www.quillaudits.com

Fringe Finance - Audit Report

Price is correct

Chainlink:

Can liquidate full amount

Can liquidate partial amount

Can liquidate amount and get incentives

Liquidation is working when HF is less than 1

Liquidation reverts when lending amount is greater than maxLA

Liquidation:

Should revert when allowance of WETH of user for contract is less than lending Token
amount

Should revert when availableToBorrow is 0 and loanBody is 0

Should revert when totalBorrowPerCollateral is greater than borrowLimitPerCollateral

Should be able to borrow some USDC tokens when isLeveragePosition is true

Should revert if collateral factor is greater than 100

Sould not allow maximum loss

Wrapped Token:

Should only use bytes in updateData

Should revert when amountSold > collateral amount

Should revert when HF < 1, isLeveragePosition is false

Repayments:

Functional Tests Cases

14www.quillaudits.com

Fringe Finance - Audit Report

Closing Summary
In this report, we have considered the security of the Fringe Finance codebase. We performed
our audit according to the procedure described above.

Issues of High, Medium, Low and Informational severity were found, suggestions and best
practice are also provided in order to improve the code quality and security posture.

Disclaimer
QuillAudits Smart contract security audit provides services to help identify and mitigate potential
security risks in Fringe Finance smart contracts. However, it is important to understand that no
security audit can guarantee complete protection against all possible security threats. QuillAudits
audit reports are based on the information provided to us at the time of the audit, and we cannot
guarantee the accuracy or completeness of this information. Additionally, the security landscape
is constantly evolving, and new security threats may emerge after the audit has been completed.

Therefore, it is recommended that multiple audits and bug bounty programs be conducted to
ensure the ongoing security of Fringe Finance smart contracts. One audit is not enough to
guarantee complete protection against all possible security threats. It is important to implement
proper risk management strategies and stay vigilant in monitoring your smart contracts for
potential security risks.

QuillAudits cannot be held liable for any security breaches or losses that may occur subsequent
to and despite using our audit services. It is the responsibility of the Fringe Finance to implement
the recommendations provided in our audit reports and to take appropriate steps to mitigate
potential security risks.

Automated Tests
No major issues were found. Some false positive errors were reported by the tools. All the other
issues have been categorized above according to their level of severity.

www.quillaudits.com

Fringe Finance - Audit Report

Follow Our Journey

1M+
Lines of Code Audited

$30B
Secured

1000+
Audits Completed

About QuillAudits
QuillAudits is a leading name in Web3 security, offering top-notch solutions to safeguard projects

across DeFi, GameFi, NFT gaming, and all blockchain layers. With six years of expertise, we’ve
secured over 1000 projects globally, averting over $30 billion in losses. Our specialists rigorously
audit smart contracts and ensure DApp safety on major platforms like Ethereum, BSC, Arbitrum,

Algorand, Tron, Polygon, Polkadot, Fantom, NEAR, Solana, and others, guaranteeing your project’s
security with cutting-edge practices.

https://www.quillaudits.com/smart-contract-audit
https://x.com/quillaudits_ai
https://www.linkedin.com/company/quillaudits/
https://t.me/QuillAudits
https://www.reddit.com/r/QuillAudits/
https://quillaudits.medium.com/
https://discord.gg/C6M2eQZagw
https://www.youtube.com/channel/UC5Yt_8qEaAr-PiTMmGBuPCQ/videos

Canada, India, Singapore, UAE, UK

www.quillaudits.com

audits@quillhash.com

For

Audit Report

August, 2024

https://www.quillaudits.com/smart-contract-audit
mailto:audits@quillhash.com

